Numerical solutions for non-linear mechanics using the Asymptotic Numerical Method (ANM)

Noureddine DAMIL

Centrale Casablanca, Centre de Recherche Systèmes Complexes et Interactions, Ville Verte, Bouskoura, 27182, Morocco

Summary

Many problems of physics and technology lead to non-linear equations depending on at least one scalar parameter λ . They can be written as: $R(U, \lambda) = 0$, $U \in \mathbb{R}^N$, $R \in \mathbb{R}^N$. The aim of this course is to present a family of numerical methods, called Asymptotic Numerical Methods (ANM) [1], to compute the response curves (or solution branches) $U(\lambda)$ of the non-linear equations $R(U, \lambda) = 0$. These ANM rely on the calculation of Taylor series, and they can be seen as an alternative to the classical continuation methods based on prediction-correction algorithms.

The ANM chains several calculations, as with many other algorithms, but here one computes a sequence of "pieces" of solution branches of the equation $R(U, \lambda) = 0$: piece¹, piece², piece³ · · · piece^j, piece^{j+1} · · · One generates a sequence of pieces of branches, each new piece being defined by a Taylor series computed from a given starting point.

In this course, we will apply the ANM to non-linear elasticity. At small deformations, the behavior of solids is reversible, and a linear behavior law is sufficient, but geometric non-linearities are often considered in the case of thin structures such as beams, plates and shells.

Hyper-elastic materials exhibit reversible behavior at very large deformations. Rubber-like materials, for example, combine a geometrically exact framework with non-linear stress-strain laws. Today, hyper-elasticity is used to model biological materials. A major concern in biomechanical research is the effect of tissue growth. In this course, we discuss the application of Taylor series to the most common hyper-elastic models.

[1] B. Cochelin, N. Damil, M. Potier-Ferry, Méthode Asymptotique Numérique, Hermès Lavoisier, 2007.